Observations Supporting “Electron Hyper-Viscosity” Current Drive in the HIT-SI Spheromak

Aaron Hossack, Tom Jarboe, Chris Hansen, Mark Chilenski, Brian Victor, Jonathan Wrobel and the HIT-SI Team - University of Washington
Masayoshi Nagata - University of Hyogo

Feb. 18th, 2010
Outline and Highlights

• Description and derivation of “electron hyper-viscosity” current drive

• Show expectation of increased electric field, increased power deposition in current drive region

• Bolometric data confirm increased power deposition with coupled magnetic fields, where electron hyper-viscosity is effective

• Phasing between coupling and electron flow predicts preferred spheromak current direction (two-fluid effect)

• Ion Doppler spectroscopy data show net ion velocities with driven current, consistent with electron hyper-viscosity model
Electron Hyper-Viscosity Differs from Hyper-Resistivity1,2 and Electron Locking3,4

- Hyper-resistivity adds a new term to the Ohms law
 - Diffuses the $\lambda(\varphi)$ profile
 - Effect similar to adding electron viscosity
 - Does not use two-fluid effects

- Electron locking is locking electron flows across field
 - Uses two-fluid physics
 - Electron fluid is locked in rigid motion across separatrix

- In Electron Hyper-viscosity magnetic fluctuations cause an effective viscosity across magnetic field
 - Uses two fluid physics
 - Drag can be effective current drive without total locking
 - Fluctuation analysis justifies intuitive picture

1Boozer A. H., J. Plasma Phys., \textbf{35}, 133 (1986)
3Jarboe T. R., Nuclear Fusion, \textbf{41}, 679 (2001)
Two Models of Relaxation Current Drive

- In spheromaks, relaxation between dissimilar topologies drives current

- One Model: Reconnection
 - Requires only resistive MHD
 - Opening field lines

- Another Model: “Electron Hyper-Viscosity”
 - Requires two-fluid (Hall) resistive extended MHD
 - Drives current across closed flux

Figure: field line trace of injector driven flux and closed flux for Taylor state equilibrium, current amplification of 2, $\lambda = 10.3$.

Figure credit: Chris Hansen
Derivation of Dynamo Current Drive

• Derivation uses pressureless, generalized Ohm’s law with Hall physics

• Resistivity allows slippage between magnetic field and electron fluid

• Derived from generalized Ohm’s law:
 • In inertial electron fluid frame:
 \[E = \eta j \]
 • Lorentz transformation into laboratory frame:
 \[E = -v_e \times B + \eta j \left(= -v \times B + \frac{j \times B}{ne} + \eta j \right) \]
 • Introduce perturbation:
 \[B = B + \delta B \quad v_e = v_e + \delta v_e \]
Solve for Force Parallel to Mean Fields

\[E + \delta E = -(v_e \times B) - (\delta v_e \times B) - (v_e \times \delta B) - (\delta v_e \times \delta B) + \eta j + \eta \delta j \]

- 1st Order
- 2nd Order

- Only 0th and 2nd order terms survive spatio-time averaging
- Only second order term yields current driving force parallel to \(v_e \) and \(B_0 \)

\[E_{||} = -\langle \delta v_e \times \delta B \rangle_{||} + \eta j_{||} \]

- On HIT-SI, majority of current carried by electrons

\[E_{||} \approx \frac{\langle \delta j \times \delta B \rangle_{||}}{ne} + \eta j_{||} \]
Think of Current Drive as Viscous Drag

• By nature of injector *driven* spheromak: \(\lambda \) in injector driven region greater than \(\lambda \) in closed flux region \(\rightarrow \) \(\mathbf{v}_e \) gradient

• Perturbation modes (black ellipses) between regions will be stretched by sheared \(\mathbf{v}_e \) flow

• Mode stretching opposed by field line tension

• Resulting effect is *viscous drag* between regions

• “Electron hyper-viscosity”:
 • Current drive in closed flux
 • Anti-current drive in injector driven region
B-Fields must be Coupled (Parallel)

- Use Taylor state equilibrium calculations to find regions with most coupling

 - Coupling = $\mathbf{B}_{\text{injector}} \cdot \mathbf{B}_{\text{spheromak}}$

- Larger region of **positive coupling** in front of left injector opening at this time slice

- Calculation for **opposite phase** of injector cycle shows **positive coupling** in front of right injector opening

- Electron hyper-viscosity current drive region **localized**

Figure: coupling calculations for spheromak ($\lambda = 10.3$) and upper injector ($\lambda = 16$)

Figure credit: Chris Hansen
B-Fields must be Coupled (Parallel)

- Use Taylor state equilibrium calculations to find regions with most coupling

 - Coupling = \(B_{\text{injector}} \cdot B_{\text{spheromak}} \)

- Larger region of positive coupling in front of left injector opening at this time slice

- Calculation for opposite phase of injector cycle shows positive coupling in front of right injector opening

- Electron hyper-viscosity current drive region localized

Figure: coupling calculations for spheromak (\(\lambda = 10.3 \)) and upper injector (\(\lambda = 16 \)). Each Calculation uses opposite injector current direction.

Figure credit: Chris Hansen
Dynamic Impedance in Hyper-Viscosity Region → Localized Power Deposition

• In electron hyper-viscous current drive region, E_{\parallel} must increase to overcome anti-current drive dynamo term

$$E_{\parallel} \approx \frac{\langle \delta j \times \delta B \rangle_{\parallel}}{ne} + \eta j_{\parallel}$$

• HIT-SI injectors induce loop voltage (V_{INJ}) → increased E_{\parallel} in dynamo region yields greater relative voltage drop

• Larger voltage drop in current drive region suggests greater power deposition.
Measure Power from Volume in front of Injector Mouth

- Bolometer views region where injector driven fields and spheromak fields interact
- Hypothesize: greater $E_{||}$ in dynamo current drive region \rightarrow greater voltage drop \rightarrow more power deposited \rightarrow more radiation measured
- Measured radiation should be higher at coupling half-cycle of injector phase

- Changing direction of spheromak current changes sign of coupling \rightarrow reversal of toroidal current changes coupling phase by 180°

Figure: machine cutaway of HIT-SI spheromak region and injector. Bolometer on right with viewing cone highlighted.

Figure credit: Mark Chilenski
Increased Radiation in Phase with Calculated Coupling

- Radiation changes phase when I_{TOR} changes direction

Bolometer Viewing Injector Mouth Region

Graph showing Bolometer Signal [Arb.] over time [ms]

- Bolometer Signal [Arb.]
- I_{INJ} [kA]
- I_{TOR} [kA]

Shot number 117501
Coupling Parameter Predicts
Spheromak Current Preferred Direction

• Empirically found: injectors tend to drive spheromak current in one direction only

• Direction of electron flow (drift velocity) in or out of injectors set by phase of injector cycle

• Location coupling region also set by phase of injector cycle, but can be switched by 180° by reversing toroidal current
• Coupling region occurs locked in phase either with electrons flowing into injector mouth or out of injector mouth, depending on toroidal current direction

• Claim greater v_e gradient & more efficient current drive when electrons exiting injector mouth
 • Once electrons have traveled through confinement region, v_e gradient will be diminished

• Preferred spheromak current direction is sign of toroidal current which phases coupling region with electrons exiting injector
Net Ion Force Drives Ions in Direction of Injector Driven Current

- For diagnostic purposes, examine effect of electron hyper-viscosity current drive on ions in injector driven region

- Recall increased E in hyper-viscosity current drive region because electrons must overcome anti-current drive and collisional drag:

\[
E_{||} = \frac{\langle \delta j \times \delta B \rangle_{||}}{ne} + \eta j_{||}
\]

- Ions do not directly respond to hyper-viscous term \rightarrow net force

\[
E_{||} > \eta j_{||}
\]

- Use Ion Doppler Spectrometer to measure velocities out of injector opening.

- Higher ion flow velocity in direction of injector loop voltage (E-field)
Data Predicts Peak v_i at Peak $E_{||}$

Induced E-field from $-V_{\text{INJ}}$ drives ions out of injector (positive velocity on plots)
Ion Doppler Spectrometer Data
Support Electron Hyper-Viscosity Effects

Ion Doppler Spectrometer viewing Injector Mouth

- Ion velocity exiting injector in phase with E-field out of injector

Instrument on loan from M. Nagata
Shot number 117688

Feb. 18th, 2010
Aaron Hossack, ICC Workshop
Summary

- Data presented are consistent with electron hyper-viscosity current drive
 - Bolometric data confirm increased radiation from regions with calculated coupling

- Preferred spheromak current direction consistent with dynamo current drive because electrons coming out of the injector produce higher current drive than electrons entering

- Dynamo produced net force on ions drives ions parallel to the current in the injector driven region

- **Future Work**: resolve ion velocities in closed flux region
 - No E-field inside separatrix, only force on ions collisional with electrons \rightarrow expect ions flow with electrons (against I_{TOR})