Development-Path Issues and Options for the Reversed-Field Pinch (RFP)

Ronald L. Miller
Decysive Systems
ICC2007
February 12-15, 2007
New FESAC Charge(s)

- DOE Under Secretary for Science, Ray Orbach, has issued a new Charge asking FESAC to 1) identify and prioritize the broad scientific and technical questions to be answered prior to a DEMO; 2) assess available means (inventory), including all existing and planned facilities around the world, as well as theory and modeling, to address these questions and 3) identify research gaps and how they may be addressed through new facility concepts, theory and modeling. A second charge will be issued asking FESAC to develop a long-term strategic plan including a specific pathway to DEMO as well as other program elements needed in a comprehensive strategic plan for fusion research. The new charge will be discussed at the next FESAC meeting March 1-2 in Gaithersberg [sic], MD.

“The tokamak is not the only way to confine a plasma. Physicists are actively pursuing other schemes, such as stellarators and reverse-field pinch machines. But the tokamak is the most successful design so far and forms the basis of ITER and, most likely, the commercial power reactors that will come after it.” -Daniel Clery, “ITER’s $12 Billion Gamble,” Science, Vol. 314, (13 Oct. 2006) 238-242.
FESAC Status Quo*

- Does the present state of RFP research** justify its promotion along the PoP–PE rungs of the ICC ladder on a timely basis?
- Does the Snowmass Development-Path consensus*** preclude any ICC as a VNS/CTF candidate?
- What does it take to make the cut as a viable DEMO candidate when the time comes?

*(March 2003).
**e.g., S. Prager, FPA Annual Meeting (Sep. 2006).
***F. Najmabadi, Snowmass Summer Study (July 2002).
What is a DEMO?

- ‘Same’ physics and technology as first commercial power plant to avoid surprise.
- Close in scale [>75% per ARIES Team Utility Advisory Committee (UAC) advice (mid 1990s)].
 --perhaps same with more design margin
 --inhibition to large plant size & output to limit DEMO risk
- Lower availability, longer construction lead time, first of a kind (FOAK) contingency, absence of learning-curve credits, etc. leads to higher projected COE.
- Shared public/private financial arrangements.
Portfolio Considerations

• A robust portfolio contains options with differing characteristics as a strategy for risk mitigation.

• Justification for continuation of options will receive intense scrutiny in times of tight budgets.

• An agile approach should do well.
RFP Power-Plant Options

- High plasma density and modest energy confinement time of the TITAN* conceptual designs (c1990) lead to a high-power-density, high first-wall 14-MeV-neutron wall load (10-18 MW/m²), compact system.

- Improved energy confinement times recently seen in the MST experiment probably extrapolate to a more modest neutron wall load (4-5 MW/m²) and a fusion power core size similar to that of an advanced tokamak design (e.g., ARIES-RS) or compact stellarator (e.g., ARIES-CS), recalling early RFP pulsed configurations (c1980).

High Neutron Wall Load Option

• Requires active emergency cooling of afterheat (LSA = 4)* and long neutron fluence lifetimes (~20 MW a/m²)

• Is consistent with compact, high-power-density operation and ‘single-piece maintenance’.

Modest Neutron Wall Load Option

- ESECOM* suggested incentives for low-activation materials choices and passive-safety cost credits as manifested in later ARIES Studies.
- Is consistent with modern blanket R&D.

Blanket R&D Supports Modest Neutron Wall Loads

Advanced Blanket Systems and Integration Issues

<table>
<thead>
<tr>
<th>System</th>
<th>Vanadium Alloys/Li</th>
<th>SiC/SiC Composite/He</th>
<th>Ferritic Steel etc / FLiBe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Structural Material</td>
<td>V-4Cr-4Ti</td>
<td>SiC/SiC</td>
<td>JLF-1, ODS</td>
</tr>
<tr>
<td></td>
<td>V-4Cr-4Ti-Si, Al, Y</td>
<td></td>
<td>Vanadium Alloy</td>
</tr>
<tr>
<td>Coolant</td>
<td>Liquid Li</td>
<td>He</td>
<td>FLiBe (He)</td>
</tr>
<tr>
<td>Breeding Materials</td>
<td>Li</td>
<td>Li$_2$O etc</td>
<td>FLiBe</td>
</tr>
<tr>
<td>Typical Blanket Design</td>
<td>ARIES-RS</td>
<td>DREAM</td>
<td>FFHR</td>
</tr>
<tr>
<td></td>
<td>Liquid Blanket</td>
<td>Gas Cooled Blanket</td>
<td>Liquid Blanket</td>
</tr>
<tr>
<td>Activation</td>
<td>Low</td>
<td>Very Low</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Inlet / Outlet Temperature & Heat Flux</td>
<td>330-610°C</td>
<td>500-800°C</td>
<td>450-550(700)°C</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Thermal Efficiency</td>
<td>45%</td>
<td>50%</td>
<td>37%</td>
</tr>
<tr>
<td>Issues for Power Reactor</td>
<td>Li Technology</td>
<td>H, He Production</td>
<td>FLiBe Technology</td>
</tr>
<tr>
<td></td>
<td>MHD Drop</td>
<td>Thermal Conductivity</td>
<td></td>
</tr>
<tr>
<td>Materials System Issues</td>
<td>Ceramic Coating</td>
<td>Hermeticity</td>
<td>Corrosion Coating</td>
</tr>
</tbody>
</table>
Steady-State Operation

- RFP Studies invoked Oscillating Field Current Drive (OFCD).
- If OFCD compromises energy confinement, as has been suggested*, it may have to be dropped or modified.
- OFCD may play a part in hybrid operational modes (OFCD ramp-up sequenced with PPCD ramp-down).
- RFCD or NBCD may be applicable; depending on consequences for performance, penetrations, and recirculating power.

Thick-Liquid-Wall Option*

- May rescue the compact, high power density option with additional savings in the component replacement cost.
 -- no neutron fluence limit on protected structures.
 -- higher availability
- Supports pulsed operation independent of high-power-density option.
- May substitute for divertor or have other implications for plasma boundary layer.

Burning-Plasma RFP

- Conceptual design* would have to be revisited and updated.
- May require PoP/PE precursor.
- Can it compete with ST-based NHTX?
- Might be first phase of later VNS/CTF device.

VNS/CTF RFP

• Conceptual design* would have to be revisited and updated.
• Can such a machine generate results for conventional FW/blanket options and still serve as a step toward a RFP DEMO with thick liquid walls?

DEMO/Power-Plant Design

• If these embodiments are in fact to be the same machine, this consideration should be explicit.
• Multi-mode optimizations can be performed.
• Performance differences can be accounted for.
• For the RFP, the TITAN systems code has been reactivated and ‘validated’.
TITAN-I Revisited

![Graph showing O&M costs for different neutron wall loads with LSA = 4.](image)
TITAN-II Revisited

![Graph showing 1992-$\$ COE (mill/kWh) vs. FW Neutron Wall Load, I_w (MW/m2) for LSA = 3 and LSA = 4.](image)
Summary

• The stage is set for a reconsideration of fusion strategic plans in general and ‘specific pathways to DEMO’.

• New information from generic and RFP-specific R&D must be considered in updating the rationale for new RFP devices along this pathway.